

ISOVAL® 11 HKB

ISOVAL® 11 HKB entspricht den Normtypen: IEC 60893 EP GC 306

EP GC 308

DIN 7735 Hgw 2372.4

NEMA LI 1 G11

Aufbau

ISOVAL® 11 HKB ist ein Epoxid-Glas-Hartgewebe aus einem Glasgewebe, imprägniert mit einem speziellen, kriechstromfesten Epoxidharz. Dieses verleiht dem Werkstoff eine hervorragende Wärmestandfestigkeit und Chemikalienbeständigkeit.

Anwendung

ISOVAL® 11 HKB wird als Isolierwerkstoff im Elektromaschinen-, im Schalter- und Transformatorenbau verwendet, wo es auf hohe Kriechstromfestigkeit und gute Beständigkeit gegen Spannungsspitzen ankommt, desweiteren in Anwendungen, wo Oberflächenverschmutzungen vorkommen.

Verarbeitungshinweis

Bedingt durch die hohe Festigkeit und Härte des Materials sowie der Glasgewebeanteile empfehlen wir unbedingt diamantbestückte Werkzeuge und hochtourige Maschinen.

Lieferform

Dicke: 0,8 - 70 mm
Dickentoleranz: nach IEC 60893
Plattenformat: 2140 x 1040 oder

1040 x 1040 mm

2800 x 1220 (bis 60 mm Dicke)

Formattoleranz: +30/-0 mm Farbe: hellgrün

Auf Wunsch können auch Zuschnitte und Bearbeitungen geliefert werden.

Technische Daten

Die Daten in der Tabelle sind Durchschnittswerte aus unserer Produktion. Garantiert werden die Mindestwerte It. Norm

Eigenschaften	Norm	Einheit	Wert
Dichte	ISO 1183 / A	g/cm³	ca. 2,0
Biegefestigkeit 23°C/120/150°C	ISO 178	MPa	450/400/300
Elastizitätsmodul aus dem Biegeversuch 23/120 °C	ISO 178	GPa	ca. 25/22
Schlagzähigkeit (Charpy) parallel zur Schichtrichtung	ISO 179 / 3C	kJ/m²	50
Zugfestigkeit	ISO 527	MPa	300
Druckfestigkeit senkrecht zu den Schichten 23°C/180°C	ISO 604	MPa	500/400
Isolationswiderstand nach Eintauchen in Wasser	IEC 167	Ohm	1x10 ¹⁰
Durchschlagfestigkeit (1'-Prüfspannung) bei 90°C in Öl senkrecht zur Schichtrichtung (Dicke 3,0 mm)	IEC 893/ IEC243	kV/mm	13
Durchschlagspannung (20 s Stufenspannungs- prüfung) bei 90°C in Öl parallel zur Schichtrichtung	IEC 893/ IEC243	kV	40
Permitivität (50 Hz und 1MHz)	IEC 250	-	5,5
Verlustfaktor (50 Hz und 1MHz)	IEC 250	-	0,04
Vergleichszahl der Kriechwegbildung	IEC 112	-	600
Thermisches Langzeitverhalten	IEC 216	T.I.	180
Brennbarkeit im vertikalen Brandtest: Dicke ≥10 mm	UL 94	-	V0
Dicke 8,0 bis <10 mm		-	V1
Wasseraufnahme (10 mm)	ISO 62 / 1	mg	25